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ABSTRACT

Solar inertial modes have the potential to surpass the diagnostic capabilities of acoustic waves in

probing the deep interior of the Sun. The fulfillment of this potential requires an accurate identification

and characterization of these modes. Among the set of detected inertial modes, the equatorially anti-

symmetric “high-frequency retrograde” (HFR) modes has attracted special interest because numerical

studies have suggested that they are not purely toroidal, as initial observations suggested, and predicted

that they would possess a significant radial flow signal at depth. Here, we analyze ∼13 years of

HMI/SDO 5◦ ring tiles, and discover a horizontal-divergence signal, directly connected to radial flows,

in the near surface layers of the Sun. We demonstrate that this signal is indeed part of the HFR

modes and not spatial leakage from prograde flows associated with magnetic regions. The amplitudes

of the horizontal divergence are approximately half that associated with radial vorticity. We also

report the presence of a ridge of enhanced power, although with a signal-to-noise ratio of 0.3, in

the retrograde frequencies that coincides with the HFR latitudinal overtones reported by models.

Using numerical linear models we find reasonable agreement with observations, though future work

on boundary considerations and the inclusion of the near-surface may improve future inferences. This

is the first instance where numerical studies of solar inertial modes have guided observations, giving

further confidence to past inferences that rely upon numerical models.

Keywords: The Sun (1693), Helioseismology (709), Solar oscillations (1515), Solar interior (1500),

Internal waves (819)

1. INTRODUCTION

Helioseismic inferences of the solar interior have clas-

sically relied on acoustic (p) and surface-gravity (f)

modes, which have pressure and gravity as their restor-

ing forces, respectively. Recent years have seen a signif-

icant shift in focus for solar interior research towards in-

ertial waves. Inertial waves, or oscillations, occur within

rotating fluids and atmospheres where the Coriolis force

acts as a restoring force. These waves typically have

oscillation frequencies comparable to or lower than the

rotation rate. Unlike p and f modes, which are gener-
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ated and confined to the solar surface, inertial modes are

thought to propagate deep in the solar interior and may

be sensitive to parameters such as adiabatic gradients

and viscosity.

Inertial oscillations occur on global scales, and it is ap-

propriate to describe them in terms of spherical harmon-

ics Y m
ℓ , where ℓ ≥ 0 is harmonic degree and −ℓ ≤ m ≤ ℓ

is the azimuthal order. The difference ℓ − |m| signifies
the number of nodes in the latitude of the flow; modes

with small values of ℓ−|m| are equatorially confined and

vice versa. The terms sectoral and tesseral, often used

in the literature, refer to flow patterns where ℓ = m or

ℓ ̸= m, respectively.

Löptien et al. (2018) were the first to report the exis-

tence of hydrodynamical inertial waves in the Sun. They
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2 Hanson et al.

analyzed six years of flow maps derived from the He-

lioseismic and Magnetic Imager (Scherrer et al. 2012;

Schou et al. 2012, HMI/SDO) and discovered an un-

ambiguous signal in the power spectrum of the surface

radial vorticity. The dispersion relation (which relates

length scale and frequency) of this signal follows sur-

prisingly well the classical Rossby-Haurwitz prediction

of thin-shell Rossby-wave propagation. These waves are

purely toroidal, i.e. no apparent radial or divergent

flow signals, sectoral (ℓ = m only), equatorially con-

fined and possess lifetimes on the order of months. Due

to strong agreement with theory, the modes of Löptien

et al. (2018) were attributed as solar Rossby waves.

Numerous follow-up studies have confirmed these find-

ings using different helioseismic methods and data sets

(Liang et al. 2019; Hanasoge & Mandal 2019; Hanson

et al. 2020; Proxauf et al. 2020; Hanson & Hanasoge

2024). Further analysis of the surface flow power spec-

tra by Gizon et al. (2021) revealed a number of ad-

ditional isolated modes that were identified as high-

latitude, critical-latitude and equatorial inertial modes.

Unlike the sectoral Rossby waves, these modes do not

follow clear dispersion relations. A notable inertial mode

in this set is the isolated high-latitude m = 1 retro-

grade mode that has been measured independently by

numerous methods and data sets (Hathaway et al. 2013;

Gizon et al. 2021; Liang, Zhi-Chao & Gizon, Laurent

2025), and is thought to limit the amplitude of the solar

differential rotation (Bekki et al. 2024).

The last member of the solar inertial modes reported

thus far is the high-frequency retrograde vorticity modes

detected by Hanson et al. (2022), which are the sub-

ject of this paper. We refer to these anti-symmetric

modes as the high-frequency retrograde (HFR) modes

because of their relatively high frequencies compared

to the other inertial modes discussed previously. The

HFR ridge comprises a distinct set of inertial modes,

so far detected only in radial vorticity measurements of

solar surface motions. The vorticity signals are anti-

symmetric (ℓ = m+ 1) across the equator and have os-

cillation frequencies roughly three times that of sectoral

Rossby modes (at the same wavenumber). Hanson et al.

(2022) reported that the motions near the solar surface

were toroidal (vortical) with no detectable poloidal (di-

vergent) flows that could be differentiated from spatial

leakage of prograde signals. Spatial leakage occurs in the

power spectrum of the inertial modes due to only part of

the solar surface being visible to Earth. Due to the high

retrograde phase speed of the HFR modes, Hanson et al.

(2022) investigated the possibility that they were mixed

mode-oscillations, Rossby waves altered by the influence

of convection, magnetism or gravity. All three possible

mixed-mode scenarios have been proposed and explored

by theory (see review of Zaqarashvili et al. 2021), and

explain the observed high frequencies. Through obser-

vational, numerical and theoretical arguments, we had

discounted these possibilities.

Recent numerical studies (Triana et al. 2022; Bhat-

tacharya & Hanasoge 2023; Bekki 2024; Blume et al.

2024; Jain et al. 2024) have reported the appearance of

the HFR modes in both uniformly rotating and strati-

fied differentially rotating spheres. Most notably, some

of the studies reported that the modes they identified as

the HFR modes are not purely toroidal and may pos-

sess a significant radial flow (i.e. poloidal flow) signal

at depth. Recently, Blume et al. (2024) reported the

appearance of the HFR modes in their nonlinear sim-

ulations and suggested that they may be mixed with

prograde thermal Rossby waves. Meanwhile, Bekki

(2024) compared the observed frequency and line widths

of HFR modes with those predicted by an eigenmode

solver, reporting that they were consistent when the

bulk of the convection zone is almost neutrally buoy-

ant or even subadiabtic. This result further constrained

the estimates provided by Gizon et al. (2021) who uti-

lized high and critical latitude modes. Guided here by

the predictions of HFR radial flow components, we pro-

vide observational evidence of a surface poloidal signal,

demonstrating that it is indeed a characteristic of the

HFR modes.

2. OBSERVATIONS

Motions in the solar interior due to inertial modes re-

sult in shifts in the frequencies and eigenfunctions of the

f or p normal modes, which is how we detect them. To

parameterize these motions, we use the vector spheri-

cal harmonics basis, wherein a general vector flow field

may be decomposed into toroidal (mass-preserving hor-

izontal motions with zero radial velocity) and poloidal

(a combination of radial and horizontal flows) compo-

nents. By construction, toroidal flows have no radial

flow and the divergence of the horizontal components is

therefore zero. In contrast, the horizontal divergence of

poloidal flows is non-zero because the radial velocity is

finite. Thus, we use the horizontal divergence as a proxy

for radial flows.

2.1. Computing surface flows

We use the horizontal flows inferred by the HMI ring-

diagram pipeline1 from the 19th May 2010 to 17th May

2023. There are a number of detailed steps involved

1 http://jsoc.stanford.edu/HMI/Rings.html

http://jsoc.stanford.edu/HMI/Rings.html
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in the generation of horizontal flow maps through ring-

diagram analysis (Hill 1988) and the interested reader

may refer to Bogart et al. (2011a,b) for more informa-

tion. In brief, the full visible disk of the Sun is captured

by the HMI Doppler camera every 45 seconds, which

can detect the surface oscillations caused by the inter-

nal f and p modes. A small region of this image, i.e.,

a small patch of the solar surface, is then tracked for

a period of time (e.g., ∼8 hours). This region is ex-

tracted from full-disk images and combined into a 3D

array Ψ̂(x, y, t), commonly referred to as a Doppler cube.

Since the patches are small compared to the solar radius,

we employ a Cartesian coordinate system, with x aligned

in the direction of solar rotation, y in the direction of

solar north and z pointing outward from the surface. A

3D Fourier transform is then performed on Ψ̂ to obtain

the spectral components Ψ(kx, ky, ω) of the oscillations,

where k and ω are the wave number and temporal fre-

quency, respectively. The complex cube is multiplied by

its complex conjugate to generate the power spectrum,

|ΨΨ∗|.
In the absence of horizontal flows, the acoustic waves

appear at fixed frequency ω as distinct symmetric rings

in k space. The presence of horizontal flows, e.g., those

generated by inertial modes, breaks the symmetry of the

rings by inducing measurable frequency shifts δω. Fits

to these rings are performed for a large set of f and p

modes by the HMI pipeline, obtaining the ‘mode fits’

Ux and Uy. Specifically,

δωi = kixUx + kiyUy, (1)

is the frequency shift induced in mode i of wavenum-

ber k = [kx, ky] propagating through a uniform hor-

izontal flow field. Each f or p mode of specific wave

number |k| propagates within a cavity near the surface,

where the depth depends on the mode wavelength and

frequency. The fits Ux and Uy are thus considered the

depth-averaged horizontal flow. The flow field as a func-

tion of depth, ux(z) and uy(z), can be inferred through

inverse methods (e.g., Pijpers & Thompson 1994) using

many different modes with different propagation depths.

This procedure is repeated in the HMI pipeline across

most of the visible disk, forming a grid of patches (or

tiles) of horizontal flows across the solar disk at every

time step.

Previous inertial mode studies that have examined

ring diagram flow maps have predominantly analyzed

horizontal flows ux(z) and uy(z) of the 15◦ and 30◦

tiles. Here, we analyze the 5◦ tiles, which utilize high

wavenumber modes that are confined closely to the sur-

face. Unlike the 15◦ and 30◦ products, the 5◦ flow

maps are not available due to the large amount of as-

sociated data (Bogart et al. 2011b). Here, we average

the mode fits U (which have the units m/s) for the f

mode, p1 and p2 modes, for the wavelength range of

500 ≤ |k|R⊙ ≤ 1500. Unlike the computation of depth-

localized flows u(z), this approach averages out depth

information. We recently demonstrated that this ap-

proach has enabled the detection of Rossby waves up to

m = 30 (Hanson & Hanasoge 2024), though at the cost

of the ability to infer its depth structure. The f- and p-

mode fits averaged here are located in a cavity ≤ 4 Mm

= 4000 km below the surface and thus potential infer-

ences that may be made by performing these inversions

would only be valid in the very-near surface of the Sun

(∼ 0.6% in radius).

2.2. Computing the inertial-wave spectrum

With the averaged modes fits Ûx and Ûy for every

patch and time step, we follow the remapping method

of Löptien et al. (2018) in order to obtain horizontal-

flow maps in the equatorial rotation frame Ωeq/2π =

453.1 nHz. We then compute both the horizontal diver-

gence ζ and radial vorticity η through

ζ(θ, ϕ, t) =
1

R⊙ sin θ

[
∂θ

(
Ûθ(θ, ϕ, t) sin θ

)
+ ∂ϕÛϕ(θ, ϕ, t)

]
(2)

η(θ, ϕ, t) =
1

R⊙ sin θ

[
∂θ

(
Ûϕ(θ, ϕ, t) sin θ

)
− ∂ϕÛθ(θ, ϕ, t)

]
,

(3)

where Ûϕ = Ûx and Ûθ = −Ûy at each patch are

flows in the longitude and latitudinal directions, respec-

tively. Spherical-harmonic and temporal-Fourier trans-

forms are performed in order to obtain the power spec-

trum of the radial vorticity Pη,

Pη(ℓ,m, ω) =

∣∣∣∣∣∣
T∫

0

2π∫
0

π∫
0

η(θ, ϕ, t)Y m
ℓ (θ, ϕ)e−imϕ+iωt sin θdθdϕdt

∣∣∣∣∣∣
2

,

(4)

which may also be extended to the horizontal divergence

ζ in order to obtain its power spectrum Pζ .

2.3. Observational results

Figure 1 panel A (B) shows power spectra of the ra-

dial vorticity (horizontal divergence) in the ℓ = m + 1

(ℓ = m) channel. As reported by Hanson et al. (2022),

there is a distinct ridge of power in the radial vorticity

(panel A) between -100 and -300 nHz, where negative

frequency implies retrograde motion, for azimuthal or-

ders m > 7. These are the HFR modes. However, unlike

Hanson et al. (2022), who were unable to clearly identify

a divergence signal in the 15◦ maps, the 5◦ flow maps

reported here show signals in the horizontal divergence
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along the same dispersion ridge measured in the vor-

ticity. The horizontal divergence signal is only visible

in the ℓ = m channel, suggesting that the latitudinal

eigenfunction of the divergence is symmetric about the

equator and likely attains its maximum there as well.

Our previous inability to detect a divergence signal

near the HFR frequencies was a consequence of both the

low signal-to-noise ratio and the spatial leakage of low

frequency prograde signals seen between 0 ≤ ω/2π ≤
300 nHz. Being able to observe only part of the so-

lar surface from Earth, there is leakage in the power

spectrum as a result of the windowing function. Specif-

ically, a signal in m with a frequency ωm will be repli-

cated in the m ± 1 channels with a diminished ampli-

tude at ωm/2π ∓ 421.4 nHz. This shift in frequency

is the difference between the solar equatorial rotation

rate (453.1 nHz) and the Earth’s (observer’s) orbital pe-

riod (31.7 nHz). This was demonstrated with synthetic

flow maps in Liang et al. (2019) (their Fig. 5) and Han-

son et al. (2020) (their Fig. A1) for time-distance and

GONG ring-diagram flow maps, respectively. As such,

any power between 0 ≲ ω/2π ≲ 400 nHz, likely due to

magnetism which rotates faster than the reference frame

(see Beck 2000), would leak down to the frequencies of

−400 ≲ ω/2π ≲ 0 nHz, where the HFR modes are lo-

cated. From Fig 1, we see the HFR ridge in divergent

in the retrograde frequencies, but in the prograde fre-

quencies, it is difficult to differentiate a ridge from the

background. A qualitative argument for why the ret-

rograde divergence signal belongs to the HFR modes is

that, if the signals in the retrograde frequencies were

due to leakage of prograde noise, the entire prograde

signal would be replicated in the retrograde, not just a

few frequency bins that happen to align with the HFR

signal.

For a more quantitative assessment, we perform m av-

eraging to improve the signal-to-noise in the horizontal-

divergence spectrum. We extract the m slices (10 ≤
m ≤ 15) of the HFR modes reported by Hanson et al.

(2022). Each slice is then translated into the frequency

grid by the resonant frequency of the HFR mode, so

that the centers of all modes are aligned with zero fre-

quency. We then average all the centered power-spectral

slices. Figure 1C and 1D show the m-averaged power

spectrum of radial vorticity and horizontal divergence,

respectively. Examining radial vorticity, the ridge as-

sociated with the previously reported HFR frequencies

is the dominant feature, with the replicated ridges at

±421.4 nHz diminishing in amplitude. For the horizon-

tal divergence, a Lorentzian-like profile coincides with

reported HFR frequencies, though its peak-power af-

ter accounting for background noise profiles is approxi-

mately a third of that of vorticity. A replicated peak is

also present at −421.4 nHz. However, at +421.4 nHz,

there are a number of peaks, some of which may be the

result of prograde magnetic inflows.

In order to differentiate the signal from the leakage,

we compute two synthetic flow maps of inertial modes.

The first model has a mode dispersion chosen to be three

times that of the Rossby-Haurwitz modes, which ap-

proximates the HFR dispersion, with a full width at

half maximum (inverse lifetime) at 10 nHz. The sec-

ond model has the dispersion frequencies shifted in the

prograde direction by 421.4 nHz, to emulate magnetic

active-region inflow signals. For each m, the mode am-

plitudes are set to unity. We then compute the inertial

spectra as outlined in the previous sections and average

in m as well. In doing so, we quantify the amount of

leakage for the 5◦ flow maps analyzed here. We fit a lin-

ear polynomial to the observed m-averaged spectra of

horizontal divergence (Fig 1D) in order to derive an es-

timate of the background power. We then scale the syn-

thetic spectra such that the central Lorentzian is consis-

tent with the observations. Figure 2 shows the two syn-

thetic models superimposed on the smooth m-averaged

horizontal-divergence spectrum. In the case where fre-

quencies of the divergence-signal are consistent with the

HFR modes, the synthetic leakage-mode amplitudes at

±421.4 nHz are well matched with the observations. In

the case where the signal is the result of spatial leakage

from a prograde signal, the amplitudes are not consis-

tent with the observations. These results confirm that

the HFR modes indeed possess a horizontal-divergence

signal at the near surface.

We note that numerical studies have also suggested

that the sectoral solar Rossby wave may be mixed with

the convective prograde modes (Bekki et al. 2022), and,

as such, may potentially possess a ℓ = m + 1 poloidal

component. We performed the same analysis on the

solar Rossby modes as we did for the HFR modes and

found no evidence, above the noise, for a surface poloidal

flow component (see Fig. A.1). Given the improved

signal-to-noise ratio of these data, we conclude that in

the near-surface layers of the Sun the motions of the

solar sectoral Rossby waves are toroidal.

2.4. Evidence of HFR overtones

The nonlinear convective simulations of Blume et al.

(2024) and analytical models of Jain et al. (2024), have

reported the presence of a sequence of ridges, beginning

with the HFR mode, with successively higher frequen-

cies (more retrograde). Two of these ridges were sym-

metric, and others were anti-symmetric with respect to

the equator. Blume et al. (2024) noted the first ridge, of
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Figure 1. Smoothed ℓ = m+ 1 radial-vorticity (A) and ℓ = m horizontal-divergence (B) power spectra for HFR modes from
the 5-deg ring-diagrams mode fits. The smoothing is for visual aid and was performed by convolving a rectangular box filter of
width ∼ 24 nHz in the frequency dimension. We have included the classical Rossby-Haurwitz dispersion (red dashed line) for
context. An approximation of the HFR dispersion and their leakage frequencies are shown by the cyan solid and dashed lines,
respectively. Panels C and D show the m-averaged (10 ≤ m ≤ 15) power-spectrum slices centered on the HFR frequencies of
radial vorticity and horizontal divergence, respectively. Both panels are normalized to the peak of the smoothed m-averaged
vorticity spectrum. We show both the full frequency resolution (black) and smoothed spectra (red). The location of the centered
HFR power and their leakage locations are shown by the blue solid and dashed vertical lines, respectively.

lowest retrograde frequency and anti-symmetric across

the equator, coincided with the observed HFR frequen-

cies of Hanson et al. (2022). Blume et al. (2024) and

Jain et al. (2024) both speculated that the HFR ridge

and the other higher frequency ridges may belong to

the same family, with each high frequency ridge corre-

sponding to a greater number of nodes in the latitudinal

eigenfunction. The first symmetric ridge, which is more

retrograde than the HFR modes, was also reported by

the linear study of Bhattacharya & Hanasoge (2023).

Unlike the Rossby or HFR modes, the presence of lat-

itudinal overtones in the observed spectra is not clearly

discernible above the noise. However, in the context of

the results of Blume et al. (2024), Jain et al. (2024) and

Bhattacharya & Hanasoge (2023), an examination of the

ℓ = m+ 2 channel, which is symmetric in latitude, sug-

gests the presence of enhanced power at frequencies ap-

proximately 60% greater than the HFR modes. Panels

A and B of Fig. 3 compare the antisymmetric ℓ = m+1

spectra to the symmetric ℓ = m + 2 spectra. We high-

light the region of interest with the white dashed line, as

well as the Rossby (red dashed) and HFR (cyan dashed)

dispersions for context. Due to differential rotation, the

latitudinal eigenfunctions of the Rossby modes are not

accurately captured by singular spherical harmonics, im-

plying the presence of a strong signal in the ℓ = m + 2

channel along the Rossby dispersion. The HFR “over-

tone” feature appears as a marginally enhanced power

above the noise in the ℓ = m + 2 channel. This fea-

ture is very weak, appearing only when smoothing and

thus determining an appropriate dispersion is difficult.

Examination of the entire spectra makes it difficult to

assert if this signal is prograde or retrograde, much like

the divergence signal analyzed already. Following the
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Figure 2. Comparison of synthetic m-averaged power spec-
trum (blue lines) to the observed, smoothed m-averaged
HFR spectrum (red lines). Panel A compares the observed
horizontal-divergence (ζ) spectrum with a synthetic model
that assumes that the ζ signal originates at the same fre-
quencies as the HFR observations. Panel B compares the
observations with a synthetic model where the ζ signal orig-
inates at prograde frequencies, presumably by magnetism.
The dashed lines indicate the locations of mode leakage.
The observations are consistent with the model where the
horizontal-divergence signal is due to the HFR modes.

same m averaging used in the previous section, we find

a weak but significant ridge of power (panel C) that

appears to be retrograde. The signal-to-noise ratio of

the mode-averaged spectra is very poor (∼ 0.3), though

given its proximity to the frequencies of the overtones

in the models, it is tempting to associate this tenuous

detection with the modes predicted by models.

3. NUMERICAL MODELING AND ANALYSIS

Thus far, we have confirmed from the observations

that the HFR modes possess a poloidal-flow component

in the near-surface layers of the Sun. This characteristic

has been suggested by all numerical HFR studies (Tri-

ana et al. 2022; Bhattacharya & Hanasoge 2023; Bekki

2024; Blume et al. 2024), although deeper in the inte-

rior of the convection zone. It may be tempting to di-

rectly compare the observations with the models in or-

der to make further inferences about the solar interior.

However, there are still a number of caveats with the

modelling that ought to be considered. Here, we utilize

the linear spectral solver of (Bhattacharya & Hanasoge

2023) to explore the closeness of the model HFR modes

to observations, and areas that still need improvement.

The outer boundary of linear stratified models is cho-

sen to be located just below the solar near-surface shear

layer (0.985 R⊙, Bekki et al. 2022; Bhattacharya &

Hanasoge 2023). The near surface sees a rapid change

in stratification (six orders of magnitude in density),

making this region very challenging to resolve numer-

ically. It is thus a common practice to excise this region

from the model domain, which we refer to here as the

truncated model. However, most seismic modes used in

local helioseismic observations, especially here, propa-

gate primarily within this region. Bhattacharya et al.

(2024) attempted to account for at least the rotational

component of the near-surface shear layer (ignoring the

steep density stratification) by squishing the observed

rotational profile into the computational domain, which

we refer to as the squished model. Figure 4 shows how

the HFR mode spectrum differs between the truncated

and squished models. The presence of the near-surface

rotational shear results in more retrograde oscillation

frequencies (greater negative values), with longer life-

times (smaller line widths). Comparison with obser-

vational errors shows that these changes are within or

comparable to the error estimates. In Fig. 5 we com-

pare the surface horizontal eigenfunctions for the HFR

mode at m = 10 for these two cases. We find that the

surface radial vorticity is qualitatively similar between

the truncated and squished models, the difference being

approximately a fifth of the amplitude of the eigenfunc-

tions. However, for the horizontal divergence, there is a

more significant change in the eigenfunction due to the

inclusion of the near-surface shear with the difference

between the cases having an amplitude comparable to

the eigenfunctions. The ability of the models to reason-

ably capture most of the HFR spectrum (frequency and

life times) suggests that the inclusion of this region may

not drastically alter current inferences that rely only on

these parameters (e.g. Bekki 2024). However, future ef-

forts that rely on the eigenfunctions will need to consider

the role of the near-surface rotation. The consequence

on the HFR spectrum or eigenfunctions due to near-
surface density and sound speed stratification remains

an open question.

Current linear models also apply an impenetrable

boundary condition at their surface (0.985R⊙), such

that there is no radial flow ur across the boundary. The

equation for mass conservation connects the horizontal

divergence of the inertial-mode motions to the radial

derivative of the radial velocity. Setting ur to zero at

the boundary influences the radial derivatives and so

the horizontal divergence is affected; these effects are

transmitted through the bulk of the simulation domain.

In Fig. 6, we plot a slice through the radial-vorticity and

horizontal-divergence eigenfunctions (at the latitudes of

their respective maxima). In general, the horizontal-

divergence eigenfunctions undergo rapid decay in their

profiles near the top and bottom boundaries, while the

songyongliang
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Figure 3. Radial vorticity in the ℓ = m + 1 (A) and ℓ = m + 2 (B) channels. Same figure notation as Fig. 1, though we
have inverted the spectrum colour table for viability. For reference we hightlight the Rossby dispersion (red dashed), the HFR
dispersion (cyan dashed) and possible location of of the HFR overtone (white dashed). Panel C shows the m-averaged spectra
of the ℓ = m+2 (panel B) along the white dashed lines of the other panels, over the range 8 ≤ m ≤ 15. Both the full frequency
resolution (black) and the smoothed (red line) spectrum are shown. The blue vertical lines show the central frequency (solid
line) and the leakage locations (dashed). The “overtone” appears as a peak in the averaged spectrum with the leakage on both
sides appearing weaker or absent. This suggests that this feature is retrograde and not a component of the prograde magnetic
activity.

vorticity appears comparatively unaffected by the pres-

ence of the boundaries. It is important to determine how

shifting the outer boundary to R⊙ would influence the

mode eigenfunctions. Additionally, the effect of other

choices for surface boundary conditions should also be

investigated, since there is no reason that inertial modes

should be limited to the solar interior.

Despite our cautious tone, numerical models have

done remarkably well in capturing solar inertial mode

physics. While the horizontal divergence eigenfunction

is sensitive to the boundary condition and rotation, the

radial vorticity eigenfunction and mode parameters ap-

pear more robust. The relative amplitude of the hori-

zontal divergence to the radial vorticity from our model

is ∼ 0.15 which is approximately 3 times smaller than

the observations where the ratio is is ∼ 0.5 . While tun-

ing the model parameters and boundary conditions may

bring about a closer agreement, this is already to be re-

garded as evidence that the models are in good stead

for future inferences.

4. CONCLUSIONS

The discovery of inertial modes raises the possibility

of ‘inertial mode seismology’: utilizing inertial modes

to infer the internal properties of the Sun. In order to

fully realize the promise of this technique, we must first

accurately characterize the observed inertial modes. Nu-

merical studies have not only reported on the presence of

HFR modes in simulations of stratified rotating spheres,

but also suggested that HFR waves possess a signifi-

cant non-toroidal (radial) flow component deep within

the solar convection zone. Using 13 years of HMI 5◦

ring-diagram fit parameters, we have constructed very-

shallow depth-averaged (∼ 0.6% in solar radius) flow
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Figure 4. The difference in the HFR mode frequency (panel
A) and line width (panel B) between the commonly used
truncated rotation profile and a model where the entire rota-
tion profile is squished into the model domain. The different
line colors signify the fractional coefficient f applied to the
differential rotation (in the co-rotating frame) to illustrate
the gradual change in the model parameters as they shift
from uniform rotation (f = 0) to the solar differential rota-
tion (f = 1). The shaded regions signify the error estimates
on the mode parameters derived from the observations used
in this study.

maps. We report the presence of a signal in the power

spectrum of sectoral horizontal divergence that coincides

with previously reported frequencies. Furthermore, we

also report the tenuous detection of an overtone of the

HFR modes, as predicted by Bhattacharya & Hana-

soge (2023) and Blume et al. (2024). This feature is

retrograde and appears in the equatorially symmetric

ℓ = m + 2 channels, suggesting it has two nodes in the

radial vorticity eigenfunction.

With equatorially anti-symmetric radial vorticity and

symmetric horizontal divergence, the HFR modes are

reminiscent of convective thermal Rossby modes (Busse

1970; Gilman 1975), also referred to as banana cells

or Busse columns in the literature. Thermal Rossby

are purely prograde according to all studies, which dis-

counts the possibility that the HFR modes are the same

as these important but observationally elusive modes.

Blume et al. (2024) and Jain et al. (2024) have both

Tr
un
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A) Radial Vorticity 2 x Horizontal Divergence

Sq
ui

sh
ed

B)

Di
ffe

re
nc

e

C)

Figure 5. Surface eigenfunctions of them = 10 HFR mode’s
radial vorticity (left column) and the horizontal divergence
(right column). Row A shows the two eigenfunctions in the
case of the truncated model that ignores the near-surface ro-
tation and stratification. Row B shows the eigenfunctions
in the case where the near-surface rotation is squished into
the model domain. Row C shows the difference (truncated
- squished) between the eigenfunctions. The right hand col-
umn has been multiplied by 2 for visualization on the same
color scale.

suggested that the HFR modes, and their latitudinal

overtones, may be the retrograde branch of mixed modes

with prograde thermal Rossby modes. We explored the

spectra for any possible cross over of the HFR modes

at m = 0, which is indicative of mixed modes, but we

found no prograde branches. However, given the high

retrograde frequency of the HFR modes, it is likely that

the crossover would occur near or above the rotation

rate −Ωref, which results in complications with leakage,

making this a non-trivial exercise. Given that the mod-

els have been accurate so far in both the HFR divergence

and latitudinal overtones, it is possible that the reason

for not observing a prograde branch of the mixed modes

may be related to the same reason that pure thermal

Rossby modes have eluded observers for decades.
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Figure 6. Slices of the radial vorticity (A) and horizontal
divergence (B) for the m = 10 HFR mode. The slices are
taken at the latitude of the maximal power, which is 30◦

and 0◦ above the equator for the vorticity and divergence,
respectively. The black vertical line signifies the boundary of
the model domain. The shaded grey region on the right is an
estimate of the mode cavity of the f and p modes used in the
observational analysis. Different line colors signify different
superadiabatic temperature gradients δ, a free and uniform
parameter of the model, which has been shown to greatly
affect the HFR modes properties (Bekki 2024).

This work represents progress derived from a dialogue

between numerical modelling and observations of solar

inertial modes. Specifically, models have been ahead of

the present observations, predicting the existence of the

radial flow component of HFR modes as well as possible

latitudinal overtones. Further effort is still required to

build trust in the numerically derived eigenfunctions;

however, the current agreement between observations

and modelling suggests that we are one step closer to

fully utilizing inertial modes to explore the deep interior

of the Sun.
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APPENDIX

A. ANALYSIS OF SECTORAL ROSSBY WAVES
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Figure A.1. Radial vorticity (ℓ = m) and horizontal divergence (ℓ = m+ 1) of the solar Rossby waves. Same figure notation
as Fig. 1. In panels C and D the centered frequencies are based on the measured dispersion of Löptien et al. (2018). Unlike the
HFR modes the Rossby waves have no horizontal divergence signal, above the noise, at the surface.
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Löptien, B., Gizon, L., Birch, A. C., et al. 2018, Nature

Astronomy, 2, 568, doi: 10.1038/s41550-018-0460-x

Pijpers, F. P., & Thompson, M. J. 1994, A&A, 281, 231
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